: Airbag replacement parts from 40-70% cheaper than dealer prices
Order Air Bags Toll Free 1-877-636-2247
Order Air bag
SRS Air Bag Module Repair
Auto Air Bags
Airbag Modules
Auto Makers Current and Discontinued Air Bags
Air bag Info / News
About Us
Contact Us
Privacy Policy
Click here to order your air bag

The History of Crash Test Dummies

GM Press Release March 19, 1997
When Congress passed the National Traffic and Motor Vehicle Safety Act of 1966, the design and manufacture of automobiles became a regulated industry. Shortly thereafter, debate began between the government and some manufacturers about the credibility of the test devices. The National Highway Safety Bureau insisted that Alderson's VIP-50 dummy be used to validate restraint systems. They required 30 mile-per-hour head-on, barrier tests into a rigid wall. Opponents claimed the research results obtained from testing with this dummy were not repeatable from a manufacturing standpoint and were not defined in engineering terms. Researchers could not rely on the consistent performance of the test units. Federal courts agreed with these critics. GM did not take part in the legal protest. Instead, GM improved upon the Hybrid I crash test dummy, responding to issues that arose in SAE committee meetings. GM developed drawings that defined the crash test dummy and created calibration tests that would standardize its performance in a controlled laboratory setting. In 1972, GM handed the drawings and calibrations to the dummy manufacturers and the government. The new GM Hybrid II crash test dummy satisfied the court, the government, the manufacturers, and became the standard for frontal crash testing to comply with U.S. automotive regulations for restraint systems. GM's philosophy has always been to share crash test dummy innovation with competitors and earn no profit in the process.
In 1972, while GM was sharing Hybrid II with the industry, experts at GM Research began a ground-breaking effort. Their mission was to develop a crash test dummy that more accurately reflected the biomechanics of the human body while in a vehicle crash. This would be called Hybrid III. Why was this necessary? GM was already conducting tests that far-exceeded government requirements and the standards of other domestic manufacturers. Right from the start, GM developed every one of its crash dummies to respond to a particular need for a test measurement and enhanced safety design. Engineers required a test device that would allow them to take measurements in unique experiments they had developed to improve the safety of GM vehicles. The goal of the Hybrid III research group was to develop a third-generation, human-like crash test dummy whose responses were closer to biomechanical data than the Hybrid II crash test dummy. Cost was not an issue.
Researchers studied the way people sat in vehicles and the relationship of their posture to their eye position. They experimented with and changed the materials to make the dummy, and considered adding internal elements such as a rib cage. The stiffness of materials reflected biomechanical data. Accurate, numerical control machinery was used to manufacture the improved dummy consistently.

In 1973, GM held the first international seminar with the world's leading experts to discuss human-impact response characteristics. Every previous gathering of this kind had focused on injury. But now, GM wanted to investigate the way people responded during crashes. With this insight, GM developed a crash dummy that behaved much more closely to humans. This tool provided more meaningful lab data, enabling design changes that could actually help prevent injury. GM has been a leader in developing testing technologies to help manufacturers make safer cars and trucks. GM also communicated with the SAE committee throughout this development process to compile input from dummy and auto manufacturers alike. Only a year after the Hybrid III research began, GM responded to a government contract with a more refined dummy. In 1973, GM created the GM 502, which borrowed early information the research group had learned. It included some postural improvements, a new head, and better joint characteristics. In 1977, GM made Hybrid III commercially available, including all the new design features GM had researched and developed.
In 1983, GM petitioned the National Highway Traffic Safety Administration (NHTSA) for permission to use Hybrid III as an alternative test device for government compliance. GM also provided the industry with its targets for acceptable dummy performance during safety testing. These targets (Injury Assessment Reference Values) were critical in translating Hybrid III data into safety improvements. Then in 1990, GM asked that the Hybrid III dummy be the only acceptable test device to meet government requirements. A year later, the International Standards Organization (ISO) passed a unanimous resolution acknowledging the superiority of Hybrid III. The Hybrid III is now the standard for international frontal impact testing. In fact, on September 1, 1997, it becomes the only official frontal impact test device for occupant restraint compliance testing to FMVSS208. And Hybrid III has been designated as the official test device for the new European frontal impact regulation schedules to take effect in October 1998.
Over the years, Hybrid III and other dummies have undergone a number of improvements and changes. For example, GM developed a deformable insert that is used routinely in GM development tests to indicate any movement of the lap belt from the pelvis and into the abdomen. Also, the SAE brings together the talents of the car companies, parts suppliers, dummy manufacturers and U.S. government agencies in cooperative efforts to enhance test dummy capability. A recent 1966 SAE project, in conjunction with NHTSA, enhanced the ankle and hip joint. However, dummy manufacturers are very conservative about changing or enhancing standard devices. Generally, an auto manufacturer must first show the need for a specific design evaluation to improve safety. Then, with industry agreement, the new measuring capability can be added. SAE acts as a technical clearinghouse to manage and minimize these alterations.
Just how accurate are these anthropomorphic test devices? At best, they are predictors of what may happen generally in the field because no two real people are the same in size, weight or proportions. However, tests require a standard, and the modern dummies have proven to be effective prognosticators. Crash-test dummies consistently prove that standard, three-point safety belt systems are very effective restraints -- and the data holds up well when compared to real-world crashes. Safety belts cut driver crash deaths by 42 percent. Adding air bags coupled with proper belt use raises the protection to approximately 47 percent.
Air bag testing in the late seventies generated another need. Based on tests with crude dummies, GM engineers knew children and smaller occupants could be vulnerable to the aggressiveness of air bags. Air bags must inflate at very high speeds to protect occupants in a crash -- literally in less than the blink of an eye. In 1977, GM developed the child air bag dummy. Researchers calibrated the dummy using data gathered from a study involving small animals. The Southwest Research Institute conducted this testing to determine what impacts the subjects could safely sustain. Later GM shared the data and the design through the SAE.
GM also needed a test device to simulate a small female for testing of driver air bags. In 1987, GM transferred the Hybrid III technology to a dummy representing a 5th percentile female. Also in the late 1980s, the Center for Disease Control issued a contract for a family of Hybrid III dummies to help test passive restraints. Ohio State University won the contract and sought GM's help. In cooperation with an SAE committee, GM contributed to the development of the Hybrid III Dummy Family, which included a 95th percentile male, a small female, a six-year-old, child dummy, and a new three-year-old. Each has Hybrid III technology.
In 1996, GM along with Chrysler and Ford became concerned about air bag inflation induced injuries and petitioned the government through the American Automobile Manufacturers Association (AAMA) to address out-of-position occupants during air bag deployments. The goal is to implement test procedures endorsed by the ISO -- which use the small female dummy for driver-side testing and the six- and three-year-old dummies, as well as an infant dummy for the passenger side. An SAE committee completed work recently to develop a series of infant dummies with one of the leading test device manufacturers, First Technology Safety Systems. Newly developed six-month old, 12-month-old, and 18-month-old dummies are now available to test the interaction of air bags with child restraints. Known as CRABI or Child Restraint Air Bag Interaction dummies, they enable testing of rearward-facing infant restraints when placed in the front, passenger seat equipped with an air bag. The various dummy sizes and types, ranging from small -- to average -- to very large, allow GM to implement an extensive matrix of tests and crash-types. Most of these tests and evaluations are not mandated, but GM routinely conducts tests not required by law. In the 1970s, side-impact studies required another version of the test devices. NHTSA, in conjunction with the University of Michigan's Research and Development Center, developed a special side-impact dummy or SID. Europeans then created the more sophisticated EuroSID. Subsequently, GM researchers made significant contributions through the SAE to the development of a more biofidelic device called BioSID, which is used now in development testing.
In the 1990s, the U.S. auto industry worked to create a special, small occupant dummy to test side-impact air bags. Through USCAR, a consortium formed to share technologies among various industries and government departments, GM, Chrysler and Ford jointly developed SID-2s. The dummy mimics small females or adolescents and helps measure their tolerance of side-impact air bag inflation. U.S. manufacturers are working with the international community to establish this smaller, side-impact device as the starting basis for an adult dummy to be used in the international standard for side impact performance measurement. They are encouraging the acceptance of international safety standards, and building consensus to harmonize methods and tests. The automotive industry is highly committed to harmonized standards, tests and methods as more and more vehicles are sold to a global market.
What is the future? GM's mathematical models are providing valuable data. Mathematical testing also permits more iteration in a shorter time. GM's transition from mechanical to electronic air bag sensors created an exciting opportunity. Present and future air bag systems have electronic "flight recorders" as part of their crash sensors. Computer memory will capture field data from the collision event and store crash information never before available. With this real-world data, researchers will be able to validate lab results and modify dummies, computer-simulations and other tests. "The highway becomes the test lab, and every crash becomes a way to learn more about how to protect people," said Harold 'Bud' Mertz, a GM safety and biomechanical expert. "Eventually, it might be possible to include crash recorders for collisions all around the car," he added.
GM researchers constantly refine all aspects of the crash tests to improve safety results. For example, as restraint systems help to eliminate more and more catastrophic upper-body injuries, safety engineers are noticing disabling lower-leg trauma. GM researchers are beginning to design better lower leg responses for dummies. They have also added “skin” to the necks to keep air bags from interfering with the neck vertebrae during tests.
Someday, on-screen computer "dummies" may be replaced by virtual humans, with hearts, lungs and all the other vital organs. But it's not likely that those electronic scenarios will replace the real thing in the near future. Crash dummies will continue to provide GM researchers and others with remarkable insight and intelligence about occupant crash protection for many years to come.

We accept Visa and MastercardIIHSNHTSA